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Sznogsis

A finite element solution for the natural frequencies and mode shapes of
free axisymmetrical vibrations and the dynamic response of arbitrary rotationally
symmetric shells is presented in this report. The stiffness for the basic
annular plate, conical and cylindrical elements are constructed by using the
static homogeneous solutions of the classical plate and shell bending theories.
The mass matrix for the annular plate is based on the same solutions. For the
conical and the cylindrical elements the mass matrix is determined using an
assumed displacement field. The developed solutions were programmed in
Fortran 1IV. The illustrative examples include a detailed analysis of a
problem of a shallow spherical cap subjected to an axisymmetrical pressure
varying with time, a solution for a plate subjected to a time-dependent ring

load and an analysis of a dynamic response of a complete sphere.




I. INTRODUCTION

Thin shells of revolution are the most important structures used in the
aero-space industry. Much work has been done on the solution of static problems
for such shells, however, the dynamic analysis of shells of revolution has
been principally limited to the consideration of special cases. The treatment
of the general dynamic analysis of thin elastic shells according to the
bending theory has not been resolved satisfactory. Federhofer [1] in 1937 and
E. Reissner [2] in 1946 were the first people to treat the axisymmetric
vibration problem of shallow spherical shells by means of a variational method.
Naghdi and Kalmins [3], using an uncoupled system of equations equivalent to
that in [1], obtained in exact solution for the problem of axisymmetric natural
frequencies and mode shapes of free-vibration of a hemispherical shell.
Subsequently, a general numerical analysis of the natural frequencies and
mode shape of free-vibration of rotational shells was given by Kalkins [4].
Recently Klein [5], using the matrix displacement finite element approach, has
succeeded in treating the dynamic response problem for an arbitrary shell of
revolution. In [5], for the basic conical element the mass and stiffness
matrix used in the equations of motion were derived from an assumed dis-
placement field taken in polynomial form. The system of equation was solved
by means of a finite difference technique to give directly the dynamic response.

The purpose of the present report is to determine the axisymmetrical
natural frequencies and mode shapes of free-vibration as well as of the

dynamic response to arbitrary axisymmetrical loading for rotationally



symmetric shells with various boundary conditions. The analysis is based on
the linear bending theory of shells. Any shell studied by the proposed
procedure is approximated by the combination of basic shell elements of
trucated conical, cylindrical and plate segments. The stiffness matrix is
derived from the analytical solution of the homogeneous field equations of

the static shell theory for the basic elements. These solutions are also used
as the displacement functions to formulate the element mass matrix in a manner
similar to the Rayleigh-Ritz procedure. The equations of motions are solved
by using normal-mode superposition approach. To carry out those solutions,
computer programe have been wirtten in Fortran IV.

As an illustration of the developed solution, the problem of a spherical
cap subjected to a axisymmetrical pressure load varying with time is solved.
The results for dynamic response are compared with those which Klein [5]
obtained by a different method. Excellent agreement between the two solutions
is found. In order to show the characteristic dynamic behavior of the shell
the natural frequencies and mode shapes are also given. Furthermore, a circular
plate under time-dependent ring load is analyzed by using only two finite
elements to indicate the advantage of "exact" formulations in the proposed
solution. The results are identical with those using 20 finite elements.
Finally, to demonstrate the generality of the proposed method the dynamic

response of a complete sphere is solved by using 50 elements.



II. HOMOGENROUS STATIC SOLUTIONS FOR BASIC SHELL ELEMENTS

The static homogeneous solutions for axisymmetrical deformation of uni-
form thickness basic shell elements are available in Refs. 6, 7, 10 and 11.
In this report we use these solutions as a basis for formulating the element
stiffness matrices [k] and the element mass matrices [m]. It is advantageous

to express these solutions in matrix form as follows:

: X(s)
{di(si} = :E:; = [Xij(s)] {tAJ} , 1)
and
5 Ms(s)\{
{si(s)f = Ns(s)f = [Yij(s)] {AJ,} (2)
QS(S))
where i = 1,2,3 and j = 1,2,...... ,6.

In these equations {d(s)} are displacement-variables which are
comprised of rotational X(s), meridional v(s), and normal w(s) displacements;
{S(s)} are force-variables which consist of meridional moments Ms(s),
meridional stress-resultants Ns(s), and shearing stress-resultants Qs(s).
[X(8)] and [Y(s)] are 3 by 6 matrices whose rows represent six linearly
independent coefficients of static solutions. {'A} is a constant column
matrix which can be determined from the nodal displacements at each end

of the shell element.



The non-zero elements functions xij and Yij of [X(s)] and [Y(s)], for each
of the basic shell elements used in this work, are listed separately in the

following sections.

I1-1. Conical Elements

The non-zero functions Xij and Yij of [X(s)] and [Y(s)] in Egs. (1) and
(2) for the conical element are listed as below. The symbols involved are

defined in Fig. 1.

_ . -1 ' . __ _ -1 ., .
Xll_cl(bel y + 2y “ber' y); Xlz_ cl(ber y 2y “bei' y);
X =c_(kei y + 2y_1ker’ y¥); X ,=-c_(ker y - 2y_1ker' ¥);
13 1 ’ 14 1 ’
X, ==(cot a/Et) (1/s); X21=c2[(V/2)ber y - (1+V)y-1bei' vl;
=c (— bei y + (1+V) y-1 ber' y); —[— ker y-(1+V)y—1kei' v1;
22 2°2 23 2 ’
-1
v ! . = M
Xp4= 2(2 kei y+(1+V)y = ker' y); X,s= log (s) /Et;
X =1; X, .=c_,(ber y-—l y bei’' y);
26 31 3 2 ’
X _.=c_(bei i bei y); X_.=c_(ker 1 ker' y);
32~ C3 P Y73 ¥ bel ¥); 3373 Y73 v yos
. 1 Ly coty
= - M = A% =
X34 c3(ke1 y-5 v kei v); X35 BT (log s + V); 36 -cot Q;

Y11=c4(ybei'y—2(1—V) (bei y+2y_1ber'y) );

-1
Y12=—c4(yber'y-2(1-v) (ber y-2y "bei'y) );

Y13=C4(ykei'y—2(1—V) (kei y+2y—1ker‘y) );

-1
Y14=-c4(yker'y—2(1—V) (ker y-2y = ker'y) );



R,

5
Y, .=c_{(ber y—2y-1bei'y)' Y_ .=c {(bei y+2y-1 ber'y) ;
21 5 ’ 22775 !

Y ,=c_.(ker y - 2y—1 kei'y); Y, =c_(kei y + 2y_1 ker'y) ;
23 5 ! 24 5 !
Y, == ; Y, =+c (ber y - 2y ' bei'y);
25§ ’ 317"% vy o Y2
Y, .=c.(beiy + 2y-1 ber'y) ; Y _.=c.(ker y - 2y_1 kei'y);
32 6 ! 33 6 ’

Y, =c.(kei y + 2y © ker'y);
34—C6 y y y);
243(1-v?)
Where c, = ——————— cot c, = + 2cota
1 2 2 Eh
Eh
cot -2
3 = TEn ¢ =27
N S _1
C5 = s cot @ C6 =3

II-2. Cylindrical Elements

The non-zero functions Xij and Yij of [X(s)] and [Y(s)] in Egs. (1) and
(2) for the cylindrical elements are listed below and the symbols involved

are defined in Fig. 2.

X11=c7(cos K €+ sin k £) X g="C,(cos &k € - sin Kk £ )
X13=c8(cos £ € - sin k E ) X14=c8(cos K € + sin & € )
X21=c9(sin KE -cos & E) X22=—c9(sin K €+ cos kK E)
X23=clo(sin K E + cos kK E) X24=clo(sin kK E - cos K &)
X _ = S_ X,. =1

25 Eh 26



-&E -kE |
= = K
X31 e cos &€ X32 e sin k€
KE KE |
X33_e cos KE X34—e sin k€
vd
35" " En
= i K = - R
Y11 c,, sin 13 le ¢ , cos 13
= i K B K
Y13 c,, sin 3 Y14 ¢, €OS E
= = K - i K
Y25 1 Y31 013(cos 3 sin k& )
= K i = in &
Y,,=C 4 (cos K€ + sin kK &) Yoq C1a (cos kK € + sin k € )
Y34=-c14(cos K £ - sin k §)
Where B K —kE ok KE
¢2=°"43 ¢ s =3 °
_ v -k€ _ v -KkE
€9 T " 2¢ € 10 2K
3 2Dk -kt _ _ 2Dk K€
€11 2 € €12 32
c = - 2DK> -KE c = 2Dk5 eKE
13 d3 14 d3

II-3. Plate Elements

The non-zero functions Xij and Yij of [X(s)] and [Y(s)] in Egs. (1) and
(2) for the plates elements are listed as below and the symbols involved are

defined in Fig. 3.



X11

=-5(1+2 log 8)

]

]

D[(3+V) + 2(1+V) log s]

1
-D(1-v) —
<2

X

12

26
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log s
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I1I. BASIC SHELL ELEMENT STIFFNESS MATRIX

In this report the derivation of the stiffness matrix [k] for each of the
basic shell elements is based upon the static homogeneous solutions given in
Egs. (1) and (2). In these equations {A}- must be determined from a total
of six boundary conditions, i.e., from three conditions at each end of the

shell elements. This is done by evaluating Eq. (1) at s=a, and s=b. Thus:

X (a) d (a)
A}: ———————————— 3
{ [X (b) ] { d (b) 3
. where we define the elements of the matrix { —————— } in Eq. (3) as the
shell element local displacement coordinates {d} , (see Fig. 4). On this
basis we can express the displacement and force-variables in terms of six
local displacements {:d} by substituting {A} from Eq. (3) into Eq. (1),

and Eq. (2). This yields

(o) - o1 [ @] (o)
and
{s(s)} = [Y(s) ] [é—%g;--J {4} (5)

Evaluating {S(s)} in Eq. (5) at the edges of the element s=a, and

s=b, we obtain

s (v | | x (e
{é"(f:;—}_ l:Y (b) ] [x (b) ] {d} (52)



~

To determine the element stiffness matrix, we have to find a relation
between the six local displacements {d} and the corresponding forces {S}
in the local coordinate system (see Fig. 4). By comparing Fig. 1 and Fig. 4,

we find the relation between (S} and {—-=-3-C-= }
h L

(6)

o e -
=IO
_
——t
win
]~
oI
o | N
\.—L\J

; 1
0 -
Where [I] is identity matrix and [0] is null matrix. By substiuting Eq. (5a)

into the above equation, we can find the desired relation between the shell

element local coordinates {(i} and the forces {S} in the same coordinates.

That is:
: -1
-1, O Y (a) X (a)
{s} =['6"."“i] [’?‘(E)"] {'i'(ﬁi'] {a} ™
: -1
From definition it follows that the matrix [:é—i——g] [—%—%E%-] [-g—%%;—]

in Eq. (7) is the shell element stiffness matrix based on local coordinate
system {d} . Since as a final result we want to form a single structural
stiffness matrix in cooperating many elements, we transform the local element
stiffness matrix to a stiffness matrix based on the system (or global) co-
ordinates ‘{q} (see Fig. 5). The transformation relation between local
coordinates {d} and the system coordinates {q} can be obtained by comparing

Fig. 4 and Fig. 5. This relation can be expressed by the following equation

{di} = [T,,] {qj} (8)



10

where i, j=1,2,...... , 6 and:
— E —
1 0 0 :
1
- 1 0
[T] - 0 cosQ sinx :
0 sinx cost : (8a)
________________ _'-...._—————-———————_——
: 0 0
]
0 : 0 cosd -sinC
]
: sinC cos
— pu—

Furthermore, the relation between forces {S} in the {d} coordinate

system, and forces ~{Q} in the {q} coordinate system can be expressed as:

{o} = 17,07 {sj} (9

Substituting Eq. (7) and Eq. (8) into the above equation, we have

! -1
o - o[B8 B 58] m o

where it is convenient to define the following matrices as:

EION
[B] = BEG } (10a)
and: \
_ |10 Y (a)
[e] = _'6‘;"i] ["f'zb) J (100>

The desired element stiffness matrix [k] based on generalized system

coordinate {q} , on the above basis becomes:

(k] = [11T [c] [(B]7! [1) (11)
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Since in this work [k] is derived from classical static solutions for
thin plates and shells and is not found by assuming @ particular displacement
field, the stiffness matrix given by Eq. (11) is “exact” for the selected

basic shell elements.



In
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IV. BASIC SHELL ELEMENT MASS MATRIX

dynamic problems the forces and displacements are time dependent, and

the inertia of accelerating masses must be taken into consideration. 1In a

given coordinate system the character of the inertia force for a shell element

can be represented by a mass matrix. Instead of using the conventional lumped

mass technique, we constructed the mass matrix by considering the correct mass

distribution in the shell element. The technique of constructing the dis-

tributed or consistent mass matrix to associate it with the nodal rings is

similar
The key
element
In this
fields.
assumed

element

to the well-known Reyleigh-Ritz method for individual shell elements.
step in this technique is to assume a displacement field for the shell
in terms of a certain coordinate system such as expressed by Eq. (4).
report we will discuss two cases with different assumed displacement
In the first case, at a particular time t, the displacement field is
to be the same as that which was used in Part II1 for formulating the

stiffness matrix. For this purpose the time factor is introduced into

Eq. (4), yielding

{d(s,t)} = [X(s)] [-2-%8—»} {d(t)}

-1 (12)
[X(s)] (-g—%%%-] [T] {q(ti}

1l

where the matrix [X(s) ] is defined in Part II. We call the mass matrix,

which is obtained by using the above assumed displacement field, the "consistent

mass matrix” for being consistent with the element stiffness matrix. In the
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second case, we assume the displacement field in the simplest possible

r
polynomial form. In this case, the matrices [X(s) ] and L_é-%%%— in Eq. (12)
become
0 2s 382 0 0
[X(s)] =]0 o© 0 0 1 s (13)
1 s 52 s3 0 0
and _ .
2
0 2a 3a ] 0
X (@) ° % . 9 b
X (b) 1 a a a 4] 0
0 1 2b 3b2 0 (o] (13a)
0 0 0 1 b
1 b bz b3 0 Q_J

We call the mass matrix, which is obtained by using the assumed polynomial dis-
placement field, the "distributed mass matrix."

The general procedure of constructing the mass matrix is the same for the
two cases. However, in determing the mass matrix a different meaning of
[X(s)] is assigned depending on whether the distributed or the consistent mass
matrix is desired.

The general expression for the kinetic energy T(t) of a shell element can

be written as
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1

2 .2 .2 .2
T(t) = 5 m P, X (s,t) +m v7(s,t) +m % (s,t) |2 nt r(s) ds (14)
s

Where m is the mass per unit of shell surface area, is the radius of

Pa

gyration of the section of a shell element, and r(s) is the transverse radius

of the shell element. For different basic shell elements see Figs. 1, 2 and 3.
Upon substituting the displacement variables involved in Eq. (12) into

Eq. (14), we obtain

-1.T

T(t) = = < q(t) > [T]T [B 7] fs 2n [E(s)] r(s)ds [B'lj [T] {éj(t)} (15)

1
2
where

2
[Eij(s)] =mp, {Xli(s)} < le(s)> +m {XZi(S)} < ij(s)>
+m {X31(55} < ij(s) > (15a)

and
i, j=1,2,..... ,6

< le(s) >, < ij(s) >, < ij(s) > are the row matrices identical to
the first, second and third row of the matrix [X(s)].

By comparing Eq. (15), with the usual one for kinetic energy,

T(t) =

NI

<a () > [m) {qm} (16)
We conclude that the element mass matrix [{m] in the system coordinates is

m] = [1T]T 8747 f 21 [E(s)] r(s) ds [B™1] [T] an

s
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The abowe equation can be used for formulating the element mass matrix in
both cases, i.e., for the "consistent mass matrix" or for the "distributed

mass matrix.” For the “consistent mass matrix,” the matrix [X(s)] from which

the matrices [B] and [E(s)] can be obtained is defined in Articles II-1, II-2,
and 1I-3, (see Eq. (10-a) and Eq. (15-a) ) for the "distributed mass matrix"

the matrix [X(s)] is defined by Eq. (13).
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V. JOINT LOAD MATRIX FOR BASIC SHELL ELEMENTS

In the finite element analysis, only the forces and displacements of
certain discrete (nodal) points of the structure are considered. At these
points the compatibility and the equilibrium condition must be fulfilled.

For this reason, any loading condition of a2 shell must be replaced by element

joint loads which are considered to be a system equivalent to the actual loads.
To accomplish this we assume that all of the actual load, which is distributed
in the region between the centroid and upper end of the element, is concentrated
or lumped at the upper end joint of the element, and all of the remaining load
is lumped at the lower end joint of the element. Thus we can develop an

expression for the "approximate joint load" {p(ti} to represent the actual

load {p(s,t)} , (see Fig. 6), i.e.,
c
T b/‘ p(s,t) 2nr(s) ds
{p(t)} = [T] T [ (18)
b
u/‘ p(s,t) 2nr(s) ds
c

where [T] is the coordinate transformation matrix, defined by Eq. (8a) and a,
b,c are the s values for the upper end, lower end and centroid of the shell
element, respectively.

A solution using this "approximate joint load" matrix has proved to be
quite satisfactory provided the size of the element is reasonably small (Ref.

3). However, if the size of the elements is made bigger, the discrepancy with
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the actual solution may become significant. 1In the latter cases, it may be
desirable to use the more accurate equivalent joint load matrix, which we

shall call "consistent joint load matrix."” The "consistent joint load matrix"
is constructed so that the work done by the actual load is egual to the work
done by the "consistent joint load” due to a virtual displacement. Here we

only write down the final results of the corresponding matrix equation. Further

information on this matrix can be found in Ref. (15).

{p(t)} = 7T 47 f[X(s)]T {p(s,t)} 27r(s) ds (19)
S
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Vi. THE EQUATION OF MOTION FOR THE DYNAMIC
RESPONSE OF THE COMPLETE SHELL STRUCTURE

We have already set up shell element stiffness, shell element mass matrix,
and shell element joint load matrix. We will now be able to find the relations
between forces and displacements through structural stiffness matrix, struct-
ural mass matrix, and structural joint load matrix by means of continuity and
equilibrium conditions at the nodal points. We consider that for a particular
node, and in a particular direction, at any time the displacement of the
structure equals the displacement of any element joint at that node. This
continuity condition can be expressed by comparing structural displacement
coordinate {r} (Fig. 7) and element system displacement coordinate {q}

(Fig. 5) in the following equation:

{qi(t)} @ = Bl {rj(t)} (20)

where {q(t)} (n) is the element system displacement matrix for element (n),
{r(t)} is the structural displacement matrix, and [6](n) is a transformation

matrix for element (n). The latter matrix is defined as

[5..] (o 1., to0, ] (20a)

- 1

ij”'(n) ik | "ig | Tim

Where [Oik], [Oim] are null submatrices, k = 1,2,...., 3 (n-1), m = 1,2,..... ,
3 (N-n), in which N is the total number of shell element, and [Iiz] is a 6x6

identity submatrix.
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In addition, the joint load of the structure at particular node equals

the sum of the joint loads of the elements which meet at that node. Therefore,

the structural joint load matrix {p(t)] and the elements joint load matrices

{P(ti} have the following relation:
o
{Pi(t)} =2 6.1 {p.} (21)
n=1 I ) J (n)

Where N again is the number of shell elements, {p(t)} () is the element joint
load matrix for element n, and {P(t)} is the structural joint load matrix.
Next, considering the n-th shell element only, we set-up the equation of

motion for this shell element, that is:

(RO} = Byla {59 @ * Byl {49} w 22)

where the subscript (n) indicates that the matrix corresponds to the n-th
element, and i, j =1, 2,..... ,6.
Substituting Eq. (20) and Eq. (22) into Eq. (21) gives the equation of
motion of the system.
N T

. N
T
{Pi(t)} = nfl 15 31 emy 527 cmy Bl imy {rm(ti} s 18 1 eny ™30T 0y

{'f-m(t)} (23)
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where i, m =1, 2,..... y 3 (n+1)
j, £=1, 2,..... , 6
or
{Pi(t)} =[x, ] {rm(t)} + oM ] ~{¥h(t§} (24)

where [K] and [M] are respectively, the shell structure assemblage stiffness

and mass matrices. These matrices are defined as follows

N T

Bl = 20 Byl Byl Puglin (242)
N T

(M0 = nil (3551 M52l PBug) () (240)
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VII. ANALYSIS OF THE EQUATION OF MOTION

The equation of motion as expressed by Eq. (24), can be solved in many
different ways. But if in addition to the dynamic responses, the free vibration
characteristics of a shell are also to be determined, then it is advantageous
to adopt the normal mode method of solution. This procedure is sometimes also
called the "mode acceleration” method (see Ref. 14). The normal mode method
is characterized by the fact that the differential equations of motion are un-
coupled, where the displacements are expressed in terms of the normal modes.
Therefore, in:a system having n-degrees of freedom, we may deal with n
independent differential equations rather than with a system of n simultaneous
differential equations.

The structural assemblage mass matrix [M], and the structural assemblage
stiffness matrix [K] in Eq. (24), are symmetrical and are positive definite.
Therefore, Eq. 24 can be uncoupled (Ref. 12). This is to say that we always

can find a matrix [¢] such that

(017 [M] [¢] = [1] (25)

and

(017 [K] [0] = [®] (26)

]

where [w] is a diagonal matrix.
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To find the matrix [¢], we first solve the eigenvectors and eigenvalues

of the mass matrix [M], such that

(617 M) [$] = [@] @7

where the columns of the matrix [¢] are the normalized eigenvectors of matrix
[M], and diagonal elements of the diagonal matrix [®] are the corresponding

eigenvalues. Since [M] is a positive definite, we have real, positive values
for all &3 in [w]. Thus, there always exists a real diagonal matrix [ - 1,

®
and we can define a new matrix [K] such that

|H

K= =1 [ K] [6) [ — ]

J& Jo ' (28)

Here again, [i] is a symmetrical, positive definite matrix. Therefore, it is

possible to find matrices [¢] and [w] such that
=.T - = =
[¢]" [K] [¢] = [w] (29)

Where the columns of matrix [¢] are normalized eigenvectors of [K], the
diagonal elements &ﬁ of the diagonal matrix [w] are the corresponding eigen-

values, and all w,'s have non-repeated positive values, i.e.,

i
0 < wl < wz < heeen < ah

Furthermore, if we define a matrix [¢] such that

[0] = [§1 [ =1 [e] (30)

w
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then matrices [¢] and [w] have the properties to satisfy Egs. (25) and (26).
This can be proved by substituting Eqs. (30), (28) and (29) into Eq. (25),

and substituting Eqs. (30) and (27) into Eq. (26). To demonstrate,

(017 [K] [o]

(17 127 [e17 (k) (8] [ =2 1 [4)
Jo Jo

(617 [K] [o]

(@]

and

[o]" [M] [e] = [81" [ — 1 (617 M) (3 [ =) (3]

MQD D
N 5 Al S S O QL B oy
o NES
= [0)F [&]

[1]

In addition, we can assert that the columns of the matrix [¢] are the normal
modes of the system, and the square root values of the diagonal elements Z&
of diagonal matrix [;] are the corresponding frequencies.

The displacement vector {r(t)} can be expressed in terms of the normal

coordinates {n(t)} as

{r(t)} = [¢] {q(t)} (31)
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and the equation of motion can be uncoupled by substituting this relation into

Eq. (24), and pre-multiplying it by matrix [¢]T. Thus,

(017 11 [o] {n(o} + (61" 4] o) {0} = [e1” {p(o)}

{'ﬁ(t)} + [®] {q(t)} = [o]T {P(t)} (32)

Note that the ith row of Eq. (32)is the differential equation for the ith

mode which is independent of those for all other modes. Therefore, this
equation may be integrated directly to yield the normal displacement ni(t).
This may be repeated independently for all other modes to solve for the n
normal displacements {ni(t)} , 1 =1,2,..... n. The total displacement of
the structure {r(t)} is obtained by inserting the solved {T](t)} values

into Eq. (31).



25

VIII. INTERNAL STRESS-RESULTANTS RESPONSE

Theoretically, the internal stress resultants {Q(ti} of the shell

element n may be obtained by using element stiffness [k] directly. That is
(n)

{ew} (o = 1, faw}

T
= [kl (810, {r(t)} (33)
= [k], . 817 [e] ()
(n) ™ {" }

Actually, the above expression for {Q(t)} leads to highly inaccurate
results. '

In using Eq. (33) to calculate the internal stress-resultant response
{Q(t)} an acceptable computational error in the displacement response {r(ti}
is greatly amplified by stiffness matrix [k]. Following the suggested
procedure given in Ref. 16, we adopt an alternative method of analysis here
so that the error due to the sensitivity of the stress resultants {Q(ti}
to computational errors can be kept small, and the degree of accuracy achieved
will be of the same order as that of the displacement response {r(t)} .

In this method the internal stress resultants are computed in two parts.
First, we apply external load {P(t)} statically, and compute the internal
forces under the assumption that all points of the system have zero acceleration.
This can be done by applying to the system the total exciting force {P(t)}

at a time t, and computing the total static internal resultants. We designate
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these internal resultants by {Q(t)} I Then, we add to this the internal
resultants associated with the acceleration of the system. To obtain the

internal forces {Q(ti} 11 corresponding to the acceleration of the systenm,
we refer tc the uncoupled differential equation of motion for the ith mode,

i.e., we consider, for example, the ith row of Eq. (32)

.. = *
iy (t) + @, ni(t) = Pi (t) (34)

This equation can be written in the form

Pt . (D)

i
(1) = ———— - (35)
o, @,
i i
or
. *
1y (1) Pi (t)
- = T]i(t) i — (36)
d, o
i i
Pz (t) *
The term = in Eq. (35) represents the response due to loads Pi (t)
w,
i s
T]i
applied to the system statically, namely for ﬁi = 0. The term - — in
®,
i

Eq. (35) represents the response due to the acceleration ﬁi(t) of the system
. . . . . . . th
when it is vibrating in its i mode.

To obtain the internal resultants {Q(ti} corresponding to the
I1

*
Pi (t)

acceleration of the system, we use Eq. (36), where all - and ni(t)

€

i
have known values. For each normal mode there corresponds an external joint

load system, which when applied to the structure, will cause it to deform
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in its ith mode with an amplitude of unity ('qi(t) = 1). For the ith mode this

joint loading is given by the following joint inertial loads:

joint load matrix = CI)i [M] {‘b}i 37

h
Where {CD} i is the ith normal mode of the system, i.e., the it column of
matrix [¢]. Using this inertia load we can compute the corresponding internal

resultants {Q(t)} i Then these resultants are amplified by the value of the
th ﬁi (t)
i normal mode acceleration response - -——— , and we obtain the internal

@O,
i
resultants {Q(t)} 11 corresponding to the acceleration of the system. That is

{Q(t)} = L - ﬁ)— {Q(t) (38)
) R | = i
i

where {Q(t)} 4 are the internal resultants corresponding to the joint inertial

load of the ith normal mode. The total internal resultants are given by

{aw} = {aw} + {ew] 39)

Where, as defined earlier,{Q(t)} ; Tepresent the internal resultants due to the
total external force exciting the system, when this force is applied statically.
In this approach the internal resultants {Q(t)} I are obtained from the
inertial joint loads associated with each joint. This procedure tends to
reduce the degree of error that may result from the discrepancies in the
inertial loads computed from Eq. (37) due to the fact that the modes {‘1’}1

are approximate.
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In Eq. (39) {Q(ti} I represent the internal resultants due to all
externally applied forces exciting the system, when such forces are applied
statically. Therefore, irrespective of the number of modes considered in the
analysis, the resultants {Q(t)} [ 2re accurately determined. If Eq. (33)
were used instead, the static effect of the applied force {P(t)} depends on
the number of modes considered in the analysis. Hence, if a small number of
modes is involved in the analysis, the static effect of the applied forces

{jP(t)} is not completely accounted for if Eq. (33) is used.



29

IX. EXAMPLES AND CONCLUSIONS

As the first example, consider an elastic circular plate clamped along
the outer edge subjected to a ring load as shown in Fig. 8 for which its
dynamic response is to be determined. The ring load P is applied as a step
function in time. This particular problem has been solved using the "con-
sistent mass matrix" in the equation of motion. To determine the dynamic
response of this plate by the developed method, only two elements need to be
used, since the element mass matrix [m] is consistent with the exact element
stiffness matrix. Alternatively, an arbitrary number of elements may be

. used, and 20 elements were selected to obtain a solution for comparative
purposes. The results of the two solutions are plotted in Figs. 11lb and
1lc. Differences between the two solutions are negligible. The solution
based on the use of 20 elements actually is a little less accurate due to
the unavoidable accumulation of numerical errors. In Fig. 1la the first
three normalized modes and the corresponding frequencies are given. Con-
sidering the rapid raise of the frequencies and the nature of the corres-
ponding mode shapes, the response due to the effect of the second and third
modes is minimal.

The second example is of the dynamic response of the shallow spherical
shell shown in Fig. 9. The data are from the Klein and Sylvester example
(Ref. 5). The 26.67° sphere was analyzed as an assemblage of a 0.67°

spherical cap and 14 cones. 'Distributed mass matrix" and "Approximate joint

loads" were used to obtain the solution for this problem. The dynamic and
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results are shown in Fig. 12b, 12¢ and 12d. These results are seen to be in
excellent agreement with the Klein and Sylvester solution. Also presented

is a plot of the first three mode shapes and their corresponding frequencies,
Fig. 12a. In this problem, due to high frequencies and slow convergence, the
effect of second and third modes is as important as that of the first mode on
the response of the system. Results were also obtained by using only the
first three modes instead of the 16 modes as above. This led to poor results.
The discrepancy between the two solutions is significant, and the solution with
three modes is unacceptable. From the experience gained in solving different
shell dynamic problems by using the developed computer program it is concluded
that for deep shell structures at least 20 modes have to be used to obtain
satisfactory results. For very shallow shells, on the other hand, 3 modes

may give resonable results. The dynamic response of the sphere shown in Fig.
10 was solved by using 50 elements. A plot of the normal displacement at a
point where the ring load P is applied is presented in Fig. 13.

The dynamic response of linear elastic shells of revolution of arbitrary
meridian shape and thickness variation can be determined using the finite
element approach. The accuracy appears to be excellent, and once a program
is developed a solution is achieved very rapidly. In the cases when the shell
is actually a combination of the basic shell elements used in this report, and
the dynamic loads are localized then the solution based on a mass matrix which

is consistent with the exact stiffness matrix may prove particularly advantageous.
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